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Abstract In this paper two minimum principles are presented for the continuum problem with
general non-linear materials (holonomic, non-holonomic. with hardening or softening. time-depen-
dent. ctc.). The proof of the first prirciple is based on the use of an elastic auxiliary problem
associated to the original non-linear one and on the interpretation of the actual inelastic strains as
unknown strains imposed on the elastic auxiliary solid. In a dual way the proof of the second
principle is given through the imposition of suitable stresses on the elastic auxiliary solid.

Classical principles of elasticity und incremental elastoplasticity are then derived trom the new
principles as particular cases. Three simple illustrative examples are given.

[. INTRODUCTION

The continuum problem in the presence of generally non-linear material behaviour is often
characterized by having no potential. This occurrence excludes the possibility of finding
extremal formulations for it (in the classical sense) and. hence. rules out the relevant
advantages. As is well known. among these advantages the following may be pointed out.

(1) The extremal formulations make the qualitative study of the problem easier, i.e.
the study of the existence. uniqueness and regularity of the solution through the so-called
direct methods of variational calculus (Dacorogna, 1989). Remarkable results in this
direction have been obtained. for example, by Ball (1977a. b) in non-linear elasticity. The
study of functionals with non-convex integrands is very attractive. In fact, such problems
have, in general. no classical solution (i.e. in Sobolev space) and the arising of spatially
chaotic structures is possible [see e.g. Dacorogna (1989) ; Schilling (1992)].

(2) The extremal formulations are particularly suitable for finding numerical solutions
of the problem through direct solution procedures (based on the Ritz method or on
the finite element approach) associated with optimization procedures (like the conjugate
gradient method, etc.). The value of the functional during the climbing process may be
used as a measure of the convergence and the value of the functional at the solution may
be used to evaluate the approximation error. Besides. it is worth noting that the success of
the finite element method in the elasticity problem (but more generally in elliptic problems)
primarily depends on its variational siructure.

In the present paper. through the generalization of Colonnetti’s classical principle of
elasticity in the presence of known distortions (Colonnetti. 1918, 1950), two general mini-
mum principles are derived. which always ensure a variational formulation of the continuum
problem in the presence of every inelastic (linear or non-linear) material behaviour.

As is well known. Colonnetti’s approach regards the material non-linearities (creep,
plasticity. etc.) as imposed strains 1n a supposedly linear elastic continuum. In the same
way the two proposed formulations are derived envisaging the total non-linear strains as
given by the superposition on the linear elastic continuum of unknown suitable distortions.

First, the non-linear material problem in the small displacement and strain range is
formulated in Section 2. Then, in Section 3, the elastic auxiliary problem notion is intro-
duced on which the generalization of Colonnetti’s principle is based. In Section 4, a general
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non-linear material principle is derived (using a particular form of Colonnetti’s principle)
which generalizes the minimum complementary elastic energy principle. Analogously, in
Section S a generalization of the minimum total potential elastic energy principle is found.
A particular class of functionals for material complying with Drucker’s stability principle
is then presented in Section 6. Section 7 is devoted to the particularization of the two
proposed principles to well-known classical principles of elasticity and incremental ela-
stoplasticity. In Section 8 three simple illustrative examples are given in order to show the
construction and use of the functionals in the case of a multiple solution or lack of solution
and in the case of time-dependent constitutive law. In Section 9 a brief discussion is
presented.

It is pointed out that the above principles have also been found in a parallel paper
(Carini and De Donato. 1995) using a mathematical approach based on Tonti’s (Tonti,
1984) general procedure of finding extended variational formulations of every non-linear
problem. Finally, it is worth noting that the functionals obtained here present some
analogies of the one suggested by Ortiz (1985) for the convection—diffusion problems.

2. PROBLEM FORMULATION AND COLONNETTI'S PRINCIPLES

2.1. Problem formulation

Consider a solid occupying a region Q (in #%) with a smooth external surface I' in a
triaxial orthogonal Cartesian reference system. I', and I', (with ' =1,ul, and
I',n T, = ) are the parts of the surface I' where displacements and surface tractions are
imposed. respectively. while x = (v,. x.. x;) denotes the position vector of a material point
in Q.

The external actions on the solid. i.e. the volume forces Fi(x;r), the imposed (say
thermal) strains 6,,(x:¢) on Q, the imposed displacements ¢,(x ;) on I', and the tractions
pdx:1) on I',. are given for any instant ¢, < ¢ < 1, of a known time interval 7 = [¢,, 1,],
through known time functionst (all external actions being vanishing for 7 < ¢,).

Under the assumption of small strains and displacements (*‘geometric™ linearity), the
equilibrium and compatibility equations read (the index summation convention is adopted) :

a,,+F =0 imnQxT )
an,=p onl,xT 2)
¢, =, +u,) inQxT 3)
w,=v, onl, xT, 4)

where ¢, and ¢, arc components of the stress and the strain tensors g, &, respectively;
("), = ¢().Cx,: nyare the components of the outward normal—to the surface I'—unit
vector.

The assumed forms of the direct and inverse general non-linear constitutive law are,
respectively,

a, = li’,-,(s—H) )
6 = D,(6)+0, (6)

or in a more symbolical way (without emphasizing the presence of the imposed distortions
0):

T1In this context no inertia forces are considered ; when it has no time meaning. the variable 7 is to be considered
only as an event ordering parameter.
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a, ="V, () (7)
g, = O, (0). (8)
where W, and ®,; are generally non-linear operators.

With the above notation any known non-linear material behaviour (history dependent
or not) may be considered (like viscoelastic, elastoplastic with hardening or softening,
viscoplastic, etc.). We assume, for simplicity, that the solid is originally undisturbed in the
sense of the initial conditions, given by :

uy=¢,=0,=0 onQx(—x.1). )
where Q = Q U T. The following additional assumptions are made.

(1) The constitutive law is invertible. i.e.

() =¥, "0). (10)

(2) The direct and inverse form of the constitutive law may be expressed as follows:

0,(x:0) = Dym(X)en (X1 0)+ W) (e, 0) 11
“;1/(x : [) = Bl//}k(x)alll\(x . [) +(D7,(0', 0) (12)
In the following we will refer to this form of the constitutive law, without emphasizing the
inelastic part dependence from the imposed distorsions 6. In eqns (11) and (12),
D, = B, is the elastic modulus tensor which is assumed to have the following usual
symmetry properties:
Duhk = D/rhA = Dy, (]3)
and the property of positive definiteness:

Dl;/zk (x)hl'yi/./‘h/\ > 0 (14)
for every x € Q and for every non-vanishing double symmetric tensor y. Assumption } will
ensure the deduction of both the minimum principles (Sections 4 and 5), while its relaxation
allows only one of the two quoted principles to be derived depending on the available form
(direct or inverse) of the constitutive law.

In the following the problem defined by eqns (1)-(9) will be referred as problem P.
Examples of the splitting of the constitutive law into a linear elastic and inelastic (linear or
non-linear) part as indicated in eqns (11) and (12) are given below.

(1) Linear viscoelastic law [see ¢.g. Christensen (1982)]:

CCH (X —1)
O-’:/(x 5 [) = Hl/hk(x : O)[i;h/\ (‘x : [) - 9,,,‘(3( : [)] + { 7(/7::7?)7 [Ellk(x s T) _Hhk(x 5 T)] dT’

(15)
where H,,, is the relaxation viscous kernel. In this case
Dy (X) = Hyjpy (% 0) (16)

represents the elastic istantaneous modulus tensor, while
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T CH (X -1
Wiex:n)) = — H(x:0)0,(x 0+ M(j ~T'-1[8,,A(x;T)—(),,L.(x:r)]dr (17)
Sl —
Jo

represents the inelastic viscous part of the constitutive law. The above form of the vis-
coelastic linear law was used extensively by Carini er al. (1995).
(2) Elastoplastic constitutive law [see e.g. Halphen and Nguyen (1975)]

G, = [):r/'r/\ Ciis by = Uy + E{']/ + Hl/ (1 8)
Olo,.q)<0. 220, ¢ps=0 (19)
i . O .
&= v (Toa ) e Hy = — - p'—(m/,qk)/. 20
co,, qy
cW
P U B (21)

where egns (18) reflect Hooke's law and strain additivity (¢f; denote plastic strains and a
superimposcd point of the symbol means infinitesimal increment with respect to t). The
first of relations (19) defines the vield function and the elastic domain, while the second
two express the loading unloading criterion : eqns (20) express the generalized flow rule of
the plastic material model (associative if y = ¢). We denote by ¢, (h = 1....,n,) the static
internal variables and by 5, the conjugate kinematic internal variables. In eqn (21), which
relates static to kinematic internal variables, W ¢an be interpreted as the stored free energy
due to structural rearrangements at the microscale. In this case

W' = — D e +0u). (22)

Here ¢, depend non-hnearly on &, through eqns (18)-(21).

(3) Other examples of constitutive law additivity of type (11) and (12) are given by
the viscoelastoplastic [sce e.g. Rabotnov (1969)] and thermoelastic cases. The additivity of
elastic and inelastic strains for many classical constitutive laws as seen in the above examples
is well known. There arc, however. constitutive laws for which the mentioned additivity is
no longer valid. such as. for instance, the elastoplastic constitutive laws with damage.

(4) In any case it is worth noting that the decomposition (11) and (12) is always (at
least formally) possible even if it may not be so easy to understand the physical meaning
of the reversible elastic and of the dissipative inelastic parts.

220 Colonnetii's principie

Castighano (1879) and later Colonnetti (1918, 1950) dealt with the problem of finding
the stress field in an elastic continuum under given distortions. In particular, the so-called
Colonnetti's principle states that: the stress field a,; solution of the elastic problem under
givenexternal loads £in Q. p,on [,.imposed displacements 2, on I', and imposed distortions
0., in Q. minimizes the following functional :

~ ~

o*B ok dQ— | oFne,dl + J %0, dQ (23)

Q

e
Elaf) =,
-Jo S

under the conditions
a¥ +F =0 in Q (24)

gin,=p, on I, (25)
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However, 1n the presence of non-linear material behaviour, the distortions due to the non-
linearity of the material are a priori unknown and are part of the problem solution;
Colonnetti’s principle, in the above form, is not suitable for direct use and it may be useful
to find a different form of it. To this aim it may be more advantageous to use Colonnetti’s
functional [eqn (23)] in the following equivalent form which may be found using the
principle of virtual work :

. 1
Eu[o'ﬂ = ijv 5:'I/Biihk6‘lfk dQ, (26)
Q

where 6¢ is the solution of the elastic problem for the following imposed strains :
9,/ = - Bi;hkatk - (')u'- 27

Obviously the minimum of £, is reached when 6, is compatible, i.c. a compatible dis-
placement field &/ may be found such that:

%(uj’/ + ul/’ r) = Br[hka;rl\ + 91/ in Q (28)

u' =v, onl, (29)

and the value of £, vanishes since ¢, does. In this way Colonnetti’s functional, in the form
(26), may be interpreted as the elastic energy due to distorsions 9,:, in Q given by eqn (27).
The above form [eqn (26)] of Colonnetti’s functional is particularly suitable for its
extension to the case of stress-dependent and stress-history-dependent distortions [i.e.
;= 0,(c)] due to the non-linearity of the material behaviour as in the case for plastic
yielding.
The new principles of next sections will be based on the above form [eqn (26)].

3. THE ELASTIC AUXILIARY PROBLEM NOTION

3.1. Statically admissible stress and kinematically admissible strain fields
A stress distribution field a(x, ¢) is defined as statically admissible when it satisfies the
following equilibrium equations:

gk +F =0 mQxT (30)
ain,=p;, onl,xT. 3D

The corresponding (generally non-compatible) deformations derived through the con-
stititive law [eqn (8)] will be referred to as

ek = D, (6%). (32)

Analogously a strain field &/(x, 1) 1s defined as kinematically admissible if it can be derived
by means of the equation:

& =, +u)) inQxT (33)

from a displacement field u(x, ¢) satisfying the boundary conditions
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w' =r, onl,xT. (34)

The corresponding (generally non-equilibrated) stress field derived through the constitutive
law [eqn (7)] will be referred to as

o, =W, (). (33)
3.2. The imposed strains elastic auxiliary problem P*

The notion of elastic auxiliary problem derives simply from the interpretation of the
constitutive law of the original problem P as a sum of two parts, the first of which
corresponds to the linear elastic behaviour.

When the inverse constitutive law [eqn (12)] is considered, the imposed strain elastic
auxiliary problem P“is defined by the original solid with the elastic material properties
corresponding to B, in the presence of vanishing external loads, homogeneous boundary
conditions and imposed strains dj; given by

d, = — (%), (36)
a* being any staticallv admissible stress field.

The imposed strain elastic auxiliary problem P¢ is then defined by the following
governing equations :

o =0 inQxT (37)

oin, =0 onl,xT (38)

Problem P: e = s(uf 4 ul, inQxT (39)
' =0 onl,xT (40)

&l = Bwoi+dy. (41)

Two other related imposed strain elastic auxiliary problems ¢, 7 will be considered in the
following depending on the kind of imposed strains and on the presence of external loads,
Le.

G +F =0 inQxT 42)

n, = p, onl,xT 43)

Problem P &+, = +a) inQxT (44)
W =r, on[,xT 45)

& = B, 46)

¢!, =0 nQxT 7

&in, =0 onl,xT (48)

Problem £¢: &tn, =@ +a) nQxT (49)
=0 onl,xT (50)

&) = B, 1)

where

’7/,' = ’S(r,‘r + dr/ - Bl/hA O'ITI( = r';}/ _(Di/ (d*) (52)
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and where ¢, is any kinematically admissible strain field. In other words #'. &, 6 of the
problem P represent the elastic response to the external loads F.. p,, and to the imposed
strains »,, and displacements ¢, on I',. In a similar way. #. &7, % of the problem 2 refer
only to the case of imposed strains »,, and ¢, is independent from the choice of the
kinematically strain field ¢},. Obvious relations between the stress, strain and displacements

of all the above imposed strain elastic auxiliary problems P/, P/, P are:

W=+ (53a)
e T (53b)
¢l =or+a (53¢)
B ==t (54a)
&= - (54b)
G =6l —a. (54¢)

where u¥, z—:ff[, o represent the known response of the solid under the external actions F;. p,,
v; and under the assumption of linear elastic behaviour with material properties cor-
responding to B,,.

3.3. The imposed stress clastic auxiliary problem P°

When the direct constitutive law [eqn (11)] is considered. the imposed stress elastic
auxiliary problem P is defined by the original solid with the elastic material properties
corresponding to D, in the presence of vanishing external loads. homogeneous boundary
conditions and imposed stresses s,. given by

s, = —Wie). (55)
¢’ being any kinematically admissible strain field.

The imposed stress elastic auxiliary problem P' is then defined by the following
governing equations :

a,,; =0 nQxT (56)

an =1 onl, xT (57)

Problem P*: &, = é(u,‘ ) inQxT (58)
w =90 onl,xT (59)

@ =D, e s, (60)

Two other related imposed stress elastic auxiliary problems 2. £ will be considered in the
following depending on the kind of imposed stresses and on the presence of external loads,
ie.

o, +R =0 mQxT (61)

an, =y, onl, xT (62)

Problem £*: & = .G, +),) inQxT (63)
=, onl,xT (64)

G =D, (65)
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G, +R—F =0 mQxT (66)
Gun, = g,—p onl,xT 67)
Problem P*: & =3, +a,) nQxT (68)
=0 onl',xT (69)
gy = D(;‘hl\éixka (70)
where
Ri = - [l}l“(sﬂ)]:[ (71)
g[ = [\Pu(su)]nr‘ (72)

In other words 4}, £, ¢, of the problem P represent the elastic response to the external
loads R,, g, and to the imposed displacements ¢, on I',. In a similar way, i, &, &, of the
problem 7 refer to the case of external loads R,— F; and ¢;,— p,. Obvious relations between
the stress, strain and displacements of all the above imposed stress elastic auxiliary problems
PP, P are:

o= ul+ul (73a)
& = ¢, +e

"s‘l u/ Y, (73b)
01;./ = OF:'/'+U':\/ (73C)
0= —u; (74a)
&, =& —&j; (74b)

/ 7 /
G, = 6, —ai. (74c)

Remarks. (1) The solutions u/, &/, a and u}, ¢}, o}, of the elastic auxiliary problem P*

and P°, respectively, can be represented through the so-called Green functions relative to
the considered elastic auxiliary solid. Let G™(x, &) be the influence matrix-valued functions
(Green functions) describing effects in x € Q, due to specified singularities applied in £eQ ;
the “effect” is specified by the first superscript, and the “cause’ by the second one. For
instance «/, &, 0% can be represented thus:

”

wl(x) = | Giy(x, &)d,y(&) dQ; (75)
JQ

Eﬁi,(x) = G;‘,(L/;(X, f)dx/x(@ dQ: (76)
JQ
~

oi(x) = | Giap(x,8)d,4(8) dQ; (77)
Jo

with the obvious relations between the Green functions
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L 1[G, GHN F
Gt =5 (e + G20 Gty = DGl 78)

(2) The solutions of the elastic auxiliary problems P¢ and P coincide in the case of
d; = —®} (o) [i.e. taking 6* = ¢ in eqn (36)] and 5, = — ¥}, (¢) [i.e. taking &’ = ¢ in eqn
(55)].

4. AN EXTENDED COMPLEMENTARY ENERGY PRINCIPLE

Let us consider the following functional of a statically admissible stress field history
oX(x;1):

1
Fl o} = L {5 JQ o}B, ok dQ— ﬁ vinoxdl

1
+ J Q) (a*)(o*— o) dQ+ EJ 0% By Gl dQ} d:e, (79)
Q Q

where o¢ are the stresses of the imposed strain elastic auxiliary problem P?in the presence
of vanishing external load, of homogeneous boundary conditions and of imposed strains
d; = —®},(6*) and ¢/ are the elastic stresses of the solid under the original external actions
F,, p, v; with the assumption of linear elastic behaviour with material properties cor-
responding to B, .

Proposition |
The functional (79) is equivalent to each of the following four functionals:

1 1
Fli[o¥] = J {J 0* Bk dQ~J vn,o¥dl + f @ (0*)oxdQ+ J 04 B 0% dQ
T Q r, Q Q

—J l?,n,aijdr+J Euj‘dQ—f—J p,-ufdl"}dt, (80)
r, Q r

P

1 1 1
F'o*] = —| @,(6%)6dQ—| vn,¢¢dl+ - | Fu!dQ+ = | puidl;ds,
] / ' 1
r (2Ja r, ' 2 Ja 2 r,

(81)
. 1
FY[o¥] = J L J G4 B, G dQ— J vn, Gl dr} de, (82)
T lz Q r,
C (1 1 o
Fllo¥ = J {7J. G4 B, w6 dQ+ 2J ol dQ~J vn,of df}dt. (83)
7 < Ja Q r,

Proof. The functional (80) is derived from functional (79) using eqn (Al) of the
Appendix. The functional (81) is derived from functional (80) using eqns (A2), (A3) and
(53¢). The functional (82) is derived from functional (81) using eqns (32), (46), (53b) and
(A4). The functional (83) is derived from the substitution of eqn {(AS) in the functional
(82) and using eqns (46), (51) and (54b.c) |



130 A. Carini

Proposition 2

A statically admissible stress field o is a (or the) solution of the problem P [eqns (1)—
(9] if and only if it minimizes (absolute minimum) the functional (79) [or any of the
equivalent functionals (80)-(83)]. The problem P has at least one solution if and only if the
functional (79) assumes. at the minimum. the following value:

17 [
Fo= [ {W ale! dQ—J v, d]"} dr. 84)
JroLF ,

Ju r,

Proof. The proof is given using the functional F},[¢*] showing that the difference
FY, —F° is always non-negative, i.e.

St dQdr = 0. (85)

This can be easily recognized because the second member of eqn (85) represents the elastic
deformation energy of the solid due to the imposed strains 5,; = &, —®,,(¢¥).

The functional F¥ attains its minimum value F°, if and only if there exists a kine-
matically admissible strain field &, and a statically admissible stress field o7 such that 4, = 0,
i.e. if and only if

g, =® (%) mQxT (86)

1

which represents the compatibility equations and the constitutive law. Equation (86) to-
gether with the conditions (30) and (31) represent the whole of the governing equations of
the original problem P [egns (1)-(9)]. If at the minimum

F' > F° 87

then no stress field o} [satisfying restrictions (30) and (31)] exists such as to satisfy also
equation (86) at the same time. Then the original problem P has no solution. [ |

5. AN EXTENDED TOTAL POTENTIAL ENERGY PRINCIPLE
Let us consider the following functional of any kinematically admissible displacement
field history w/(x:1):

a ~ » "

] : i
Fl[u] = ' «}7 ‘ e D, e, dQ— | Fu)dQ— | purdD
o/ r",

JQ J

+

1
W7 (e (e, — &) dQ+ EJ e D e dﬂ} dr, (88)
Q

JQ

where ¢, are the strains of the imposed stress elastic auxiliary problem £ in the presence
of vanishing external load, omogeneous boundary conditions and imposed stresses
s; = —Wi(g’) and sf,?' are the elastic strains of the solid under the original external actions
F., p. v; with the assumption of linear elastic behaviour with material properties cor-
responding to D, .
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Proposition 3
The functional (88) is equivalent to each of the following four functionals:

n

1 ~
F};lw[”?] = [ {2J Dy ey dQ — [ Fuy dQ—
T Q 0

~ N

(l;/Dzv/7A':}1de+J 1‘,11,.0;,dF~J E,u;dQ_J
« Q

pa dl

Ji

[ 1
+ J Wi (e')e dQ+ J
o 2

Q r [

pilt} dr}dl (89)

n

” | I 1 »
FUl ] = J {7 J W (e)E, dQ+;[ raya dl = | Fa dQ— J p,.a;dr}dz (90)
T = Ja - ]'/)

JI, JQ

. O »
Fipu] = J JE i & D g i dQ — ( FardQ— | pi; dr}dt 91
T { Jo Ja Jr

»

‘ n 1 " n ”
Frolul = {7 ‘ 6,6,dQ+ - | o/le dQ ~—J Fu dQ—J pius dr}dt. 92)
Jr = Ja Q@ r,

JQ

Proof. The functional (89) is derived from functional (88) using eqn (A6). The func-
tional (90) is derived from functional (89) using eqns (A7), (A8) and (73a,b). The func-
tional (91) is derived from functional (90) using eqns (A9) and (65). The functional (92) is
derived from the substitution of eqn (A10) into the functional (91) and using eqns (70) and
(74b, c). [ ]

Proposition 4

A kinematically admissible displacement field & is a (or the) solution of the problem
P [eqns (1)-(9)] if and only if it minimizes (absolute minimum) the functional (88) [or any
of the equivalent functionals (89)-(92)]. The problem P has at least one solution if and
only if the functional (88) assumes, at the minimum. the following value :

PO | =

~ » r
F = { otle! dQ — ‘ F,u:fdsz—[ p,u;ff'dr}dr. (93)
T Jo JI,

Q

Y Y

Proof. The proof is given using the functional £, [4/] and showing that the difference
F),. — Fy, is always non-negative. i.e.

v ~0 L e
F,,“, - l"/u = b
~JrJe

.8, dQdr > 0, (94)

This can be easily recognized because the second member of eqn (94) represents the elastic
deformation energy of the solid due to the volume forces £, = —[¥,(¢°)],—F; and the
surface forces g, = W, (e)n,—p,on I,

The functional F}, attains its minimum value £, if and only if £, = 0 and g, = 0, i.e.
if and only if

[V, ()], +F =0 inQxT (95)
W, em, =p onl,xT (96)

which represent the equilibrium equations and the constitutive law. Equations (95) and
(96), together with conditions (33) and (34), represent the whole of the governing equations
of the original problem P [eqns (1)-(9)]. If, at the minimum
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FY.>F® 97)

tpe

then no displacement field ! [satisfying restrictions (33) and (34)] exists such as to satisfy
both the equations (95) and (96) at the same time. Then the original problem P has no
solution. B

6. A PARTICULAR CLASS OF FUNCTIONALS

6.1. Splitting of the extended complementary energy functional
The functional (79) can be written as a sum of two partial functionals in the following
form

Fllo%] = FiloX]+Fllok), (98)

where

-
F*[o¥) = .[ {7 a;‘,‘-d),-,-(a*)dQ—J a?}n,v,dr}dt (99)
2

. Q r,

~ 1 ~ l
F(l?[a:.;] = J {‘) Jfl/Buhka‘I{k dQ+§ ( (D?/(G*)U?I" dQ—\[
~JQ Q

T = Q

dny,.(a*)a;f{’dg}dz. (100)

The following proposition may be proved.

Proposition 5

A statically admissible stress field ¢ is a (or the) solution of the problem (1)—(9) only
if (necessary condition) it minimizes (absolute minimum) both the functionals (99) and
(100) and if (sufficient condition) for any couple 6" and ¢*® of admissible stresses the
following condition holds everywhere in Q and at any re T:

aX L)+ 0D (D) — 20K VDL (6*) > 0, (101)

Proof. Let us consider the differences (where ¢, is the actual stress distribution) :

AFl = Filo}] — Fi[o,] (102)
AF = Filo¥] - Flloy) (103)
AF!, = F',[6}¥]—F![0,] = AF2+AF (104)
and
Ao, =0%—0, (105)
Ad) = i(a*) —i(a). (106)

The difference (102), using eqn (105) may be written as:
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1 .
AF!‘: = J {5\[ AUUB!/hl\thk dQ""
T Q

v

"

AG, (Bijw 0w + D} (0)) dQ

1 1
~J Ao nr,dIM+ ZJ odl(e*) dQ + EJ 0,0 (o) dQ—J
r, Q Q

Q

o (o) dQ}dt, (107)

where the second and third term of the second member vanish by virtue of the principle of
virtual work. Using inequality (101) and assuming e*" = ¢* and 6*® = @, the following
may then be written :

AF% >0 (108)
AF% =0 ifandonlyif ¢f =g, (109)

This means that any (or the) solution of the original problem (1)—(9) minimizes the
functional (99) (necessary condition) under the admissibility conditions of ¢}f. Similarly it
is easy to prove that

AF"™ >0 (110)
AF® =0 ifandonlyif o*=og,. (111)

Then a (or the) solution of the original problem (1)-(9) minimizes the functional (100)
(necessary conditions) under the admissibility conditions of o}¥. [ ]

6.2. Splitting of the extended total potential energy functional
In the same way as shown in Section 6.1 the functional (88) may be written as a sum
of two other functionals in the following form

Fl ] = Fi 1+ Fipu). (112)
where
r» r

1
{2 f W, (e") dQ — J Fu dQ— f p,u§’df}dt (113)
T Q Q T,

v

Fla

(W] =

W

f (1 1 .
Fo ] = J { J £, D iy AQ+ = J W (e)el dQ— J W (e°)e dQ}dl. (114)
T 2 N 2 Q

Q
The following proposition may be proved.
Proposition 6
A kinematically admissible displacement field «{ is a (or the) solution of the problem
(1)~(9) only if (necessary condition) 1t minimizes (absolute minimum) both the functionals

(113) and (114) and if (sufficient condition) for any couple " and > of admissible
displacements the following condition holds everywhere in Q and at any te T

E () 8P P () — 265 W () 2 0. (115)

No proof is given here because it is analogous to that given in Section 6.1.
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Rentark . In the presence ot a material behaviour complying with inequalities (101) and

(L15) for every couple of stresses a!)'.a'?' (even non-statically admissible) and strains

e ¢7 (even non-kinematically admissible). respectively, and in the presence of an invert-

ible constitutive law, the relations (101) and (115) are equivalent to each other, as is easily
shown in the following. Let us write relation (101) in the new form:

6, D6 )+ 0D (67} 20D 67 ) (61} —a B (o’ —oi’) =0 (116)
which transforms [taking into account the reversibility relation (10)] into:

aUWoE!) - TWeT) S 28 W e — (6l — o ) B (el —ali) =0 (117)
or in the following equivalent form:

l]lq_;u \‘Y ;;ruixl_};:r/“: 11 '3 ( W (}A,l) [\_IJ:I/(84| ) \};u (8( ))]B,,M[\P (B(li) \{/;1,(8(2))] > 0
(118)

The positive definiteness of the elastic modulus tensor Dy, [see eqn (14)] [and then of the
non-ncgativeness of Tust term of eqn (118)] implies:

U W) = 26 W) = (119)

In a similar way it is possible to derive relation (101) from (115), under the same hypotheses.

T OLINKS WITH SOME CLASSICAL FUNCTIONALS

Reference is made in the following to the classical principles of the linear elasticity and
incremental plasticity : this implies that in the next subsections, the time dependence of the
material behaviour and of the problem will be ignored.

1. Linear elasticity encrgy functionals
It is easy to show that in the linear elasticity case. as a consequence of the absence of
the non-linear part @7 (+) of the constitutive law (12), and W};(*) of the constitutive law (11)
the functionals (79) and (88) transform into the classical ones of the complementary and
total potential encrgy :

~ ~

1
F lo¥ = | a¥B ok dQ—| ofne,dl (120)
=] v,
1 . r
)= | en e deJ FurdQ—| paucdrl. a21)
-Ju 0 Jr

P

When @/ (g *) is considered as a known distortion (,; (as in the case of a given thermal type
distortion) then. apart from non-cssential constant terms, the functional (79) transforms
into the following well-known Colonnetti’s functional (Castigliano, 1879 ; Colonnetti, 1918,
1950 : Reissner. 1931}

~

cFB., o8 dQ— | okne dl + [ 0,0k dQ. (122)
Ja

)

il JI

]
A *
[u [Cy;- - 2
In the same way. when B, Wi (&") is considered as a known distortion §,,, apart from non-

essential constant terms. the functional (88) transforms into the following Greenberg’s
functional (Greenberg. 1949a) :
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1 ~
qu[u;’}] = ; C;’/Duhk‘szlx dfl _j F,M;) dQ" [ ]71'“:‘ dl— + [ (}ill)//hkgll;lx dQ (]23)
- () I

JQ Q J JO

‘

7.2. Incremental plasticity functionals
When dealing with incremental elastoplasticity, the sufficient condition (101) for which
the two partial functionals F2, F'" of F!. attain the minimum at the solution. becomes

(where a superimposed point of the symbol means infinitesimal increment with respect to

[)Z
. . . ). hRTA . . Rl
G/T(“":/T(]) *G,f("&,’/kl" "O',T(“él,’fl” > 0 (174)

which may be easily recognized us one of the fundamental consequences of Drucker's
stability postulate (Drucker. 1951). the plastic incremental strains &*"" 4*" (cor-
responding to the incremental stress 6%, 6% starting from the same stress state &, on
the yield surface) being given by :

é-ﬁth — (D:f(d',-’flll). Ia*w_‘y' — (D:A/(d.JT(:)L (]25)

‘i

Then the two partial functional F" [eqn (99)]. F'" [eqn (100)]. written in incremental form.
become:

) N D :
Fe}] = 5 gre¥e*) dQ— | dkn.e,dl (126)
=Ja s,
Ibr % l i L i l " CkP ok ok A Ak ek Y 0t
Fu‘ [Ur/] = b (Tr/'B:/hA Ok dQ+ 5 é:ul (O’ )(T:/ dQ_ é:l/'/ (6 )O-l/ dQ (]27)
=Ja = Ja JQ

[tis easy to recognize ineqn (126) the Prager -Hodge functional (Prager. 1942, 1946 : Hodge
and Prager, 1948), while functional (127) seems to bec new. to the author’s knowledge.

In the same way the two partial functionals F75, [eqn (113)]. Fi}, [eqn (114)] of F},,
become :

» ~ ~

Finla] = J gai(e) dQ— ‘ Fu dQ— ’ padr (128)
=Jo Q JT
Filu] = l | 6D, B dQ+—l [ G(E)E, dQ — i G (&) dQ, (129)
-JQ =Jo Jo
where
gl = WiE) = — D (130)

[t is easy to recognize in eqn (128) the Greenberg Prager functional (Greenberg, 1949b ;
Prager, 1942, 1946) while functional (129) seems to be new, to the author’s knowledge.

Connections of the above functionals (126)--(129) with other more recent incremental
plasticity functionals (Ceradini, 1965, 1966 Capurso, 1969 Maier, 1968, 1969, 1970
Capurso and Maier, 1970) can be easily recognized when the incremental elastoplastic
constitutive law is written in terms of plastic multiplier rates.

SAS 33-1-J
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8. SIMPLE ILLUSTRATIVE APPLICATIONS
8.1. Elastic spring with hardening or softening

The aim of the example is to show the use of Colonnetti’s extended minimum principle

in the dual form [eqn (88)] when the problem has more than one solution or when no
solution exists.

In the example of Fig. 1, the spring has a two-branch piecewise-linear elastic behaviour
with the slope of the last branch given by ak(k > 0) with —oo < o < 1 [see Fig. 1(a)]. The
constitutive law may be written in the form

P4 x-05 ‘P

P‘ A~ (\!( sl

ok N

U 1 W

-0.3
(b)

Flypo/F

-0.8

ORI Y S E S

i
—
| @
[ =

-1.3 — e S SIS E—
-0.4 0.1 0.6 1.1 1.6 2.1

u/ul

Fig. 1. Use of Colonnetti’s extended minimum principle in the form (88) for an elastic spring (a)
with hardening (x > 0) or softening (x < 0) when the problem has more then one solution (b), or
one solution only {c) or when no solution exists (d). In (¢) the functional (88) F},. (u. P) is depicted

as a surface in the space F}, — P—u. In Figs 1(b)~(e) F* = Pi/k.(Continued opposite.)
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(d)
(e) 53
#i 3
MR
;; S
97;9 P P/Pl
/ e ° s
u/u, ®
Fig. 1—Continued.
P = ku+ck(x—1)(u—u,) (131)

with ¢ = 0 for u < u, and ¢ = 1 for u > u,. Then the functional (88) becomes (for u < u;, —
(P,/ak) when o < 0):

B P 2
Fl[u] = %ku‘ — Pu+ck(a— 1)(u~u,)<u— k>+;ck(1~ DX u—u,)? (132)

and its minimum value F7, to be reached for the existence of the problem solution, becomes :

, | P°
Fho=—5, -

&

(133)

In Figs 1(b-d) the plots F,.[u] for « == —1 and for different values of the applied load are
given. From Figs 1(b, ¢) it may be deduced that the solution exists for the given value of
the load, since a minimum of the functional assumes the value F), ; from Fig. 1(d), instead
it appears that the problem has no solution because the minimum of the functional is
greater than F),,. The shape of the surface F},,[u, P] is shown in Fig. 1(e).

1pe
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.02 ' =-3.
0.0 1 | o 3.0 a=—3.0
1 w,/1 |
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0.00 0.01 0.02 0.03

Deflection f/1

Fig. 2. Use of Colonnetti’s extended minimum principle in the form (88) for the cantilever of (a)
with end spring behaviour given in (b). (¢) gives the supported end deflexion f for any given load ¢
for different values of the hardening coefficient (hardening for x > 0. softening for « < 0).

8.2. Propped cantilever supported on an elastic spring with hardening or softening

The aim of this example is to show the construction of Colonnetti’s extended functional
in the dual form [eqn (88)] in the case of a very simple structure.

In the example of Fig. 2 the linear elastic cantilever of Fig. 2(a) (with constant bending
stiffness £J) is simply supported at B with a spring of the type of Fig. 1. In this case the
solution exists for everv value of the distributed load ¢(x) on the cantilever and for any
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value (even negative) of the x parameter. The functional F}, [eqn (88)] in the unknown
kinematically admissible displacement function w(x), assumes the form:

1 ™ AN . nl
Fl[w] = :)'J EJ((A\E) d»\'+lkf" — | gl)w(y)da
“Jo CXT Jo
w2 Ve e, a3
" Y !
' ( &kﬁ+%£h) . kI* +3EJ
where
. P, A
(for f<<u, —— when a< 0)
xk
W (/) = ck(a—1(f—u). (135)

with ¢ = 0 for u < u, and ¢ = | for u > u,. In Fig. 2(¢) the plot of the applied load vs the
end deflection of section B of the cantilever for different values of x is given. In particular,
for « = —3 and for P < P,. three solutions exist.

8.3. Deflections of a non-homogeneous viscoelastic beam

The aim of this example is to show the application of Colonnetti’s extended functional
in the dual form [eqn (91)] in the case of time-dependent constitutive law.

Consider the non-homogeneous linear viscoelastic beam of Fig. 3(a) doubly clamped
(in A and B) and with a concentrated known load P at the centre line C. The problem is to
find the displacement function w(x;r) for 0 <t < 7. The beam left side is elastic with
Young’s modulus E,. while its right side is viscoelastic with the following moment—curvature
relationship :

Mixiny = oy MO0 o= n avte) (136)
-

' o cr ‘X

where r(1) is a three-parameter viscoelastic hereditary Kelvin—Voigt relaxation function:

Hy=E, —(E,—E,)e ', (137)
where

E - E\E, T* n
T E +ES E 4+ E

(138)

E,, E,, n being the parameters of the Kelvin-Voigt rheological model of Fig. 3(b). The
functional F}), [eqn (91)], in the unknown kinematically admissible displacement function
w(x:t), assumes the form:

T A2 AN D 7
FIS[w(x: 0] = E,J<(ﬁ ‘f) d.\*dtkj Pi(lj2: 1) dr, (139)
0 X7 i}

“

JO

where W is the solution of the elastic auxiliary problem. i.e. of the elastic problem with
elastic bending stiffness £,/ for the entire beam. under the transverse load :

Gixin = a0 - Cwlein rarti=o) (——j——t(}«—l)d (140)

cx? lo 1 oxt
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1_)
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Fig. 3. Use of Colonnetti’s extended minimum principle in the form (91) for a non-homogeneous

viscoelastic doubly clamped beam (a). The beam left side is elastic, while its right side is viscoelastic

with the three parameter rheological Kelvin-Voigt model of (b). (¢) shows the particular auxiliary

loads deriving from the chosen displacement compatible cubic function w(x), used for the deter-

mination of the elastic auxiliary problem solution #(x). In (d) is shown a comparison between

the exact solution and the approximate solution with three temporal degrees of freedom for the
displacement u(7) and the rotation #(¢) at the centre line C.

with r(r) = £, = constant for the beam left side. It is possible to represent the unknown
function w{x ;1) with a displacement compatible cubic function of x separately over the left
side and right side of the beam, i.e.

wix:r) = N(ut)+N-(x)l6(r) forO0 < x <12 (141)

vy Y — N Ny LN oy farl? < v </ (14M
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with

()
v = 23 +4(3)

!
Vi = —da+24( 5= 36( ) 6%

Ni(x) = —4+ [)“ ] + /

Ny(x) = ~2+8<7>—10(f)_+4<‘;), (143)

where u(r) and (1) are approximate with given time shape functions over the whole time
interval 0 <1 < T.1e.

W)y =M (x =M, .M, ... M ... o] (144)

0(,) - M{([)ﬁ = [Ml)|~ M(i ‘‘‘‘‘ ‘M()"][Bls - '1ﬂn]T' (145)

Using eqns (141)- (145). the load §(x: ) of eqn (140) transforms into the following con-
centrated loads (concentrated force P and moment M) at the centre line C [see Fig. 3(c)]:

. EJ
P= 1~|‘ U2IM, () + U (0 + Vo (D) +- -+ (M (1) + U, () + TV, (1)a,]
*6/[(1’uu‘(f(;) - Uﬁ,(’) - Vul(’))ﬁl +o (lwt)”(fo)_ U(?,,(I)'“ V{I,,(t))ﬁn]} (146)
. EJ, _ : ,
M= ; L OI(M, (1)~ U, () -V, (), +- -+ (M, (1) = U, (1) =V, (1),]
+4[:[(/wu‘([n)+ Uy ()4 Vo (D) +- -+ (M, (10) + Uy () + I/(),,(Z))ﬂn]}’ (147)
where
Con =" i v =" w0 fort < i< (148)
' E, T : E, T
") dM, " orry M,
) = SRt —dr V(0= | e —— <i<n 4
V.(1) | rtron a0 di: V(0 | vy de dt forl<i<n (149)

Now the solution (v : 1) of the elastic auxiliary problem becomes :

{ -
P+ N, ()

{ .
Hxit) =N (x) ( <x<l 1
Ww(x:o '(\)241-,‘,.1 SE[JMU) for0 < x <12 (150)
. o I ) roo.
w(x:t) = ]\1,(\);"11: )P([)+J\’4(.\') 8*E*.}4M(l) for{ji2<x<l (151)
24F,. |

Substituting eqns (150) and (151) in (139) we obtain a 2n parameter quadratic function
whose stationarity leads to a linear system of 2n equations. In Fig. 3(d) the exact viscoelastic
solution u, () and 0 _ (1) of the problem of Fig. 3(a) is compared with the three parameter
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(n = 3) solution in the time interval (0 < ¢ T* < 10), having used the following time
logarithmic shape functions:

M, =M, =1

M, =M, =In(+1)

i

M, =M, =(n@+1))°. (152)

The diagram of Fig. 3(d) shows that the present method allows a good interpretation of
the viscoelastic behaviour of the beam.

9. CONCLUSIONS

Under the assumptions of general non-linear invertible constitutive law with the form
(11}, (12). two minimum principles [eqns (79) and (88)] have been derived as a generalization
of Colonnetti’s principle. The above result was obtained despite the absence of a potential
of the problem (which excludes the existence of extremal formulations in the classical
sense), by introducing the notion of elastic auxiliary problem.

Main characterizations of the proposed generalization of Colonnetti’s principle (which
consider the material non-linearitics such as distortions developing in the continuum
assumed in linecar elastic regime) are

(1) the energy meaning of the tunctionals (which is useful for their construction) ;

(2) the linear elasticity and incremental elastoplasticity classical formulations may be
found as particular cases of the generalized formulations;

{3) the formulations are valid in all cases even in the lack of existence or uniqueness
of the solution. In fact when there is no uniqueness. all solutions can be determined, while
we can easily sce the lack of existence of the solution testing the extremal value of the
functional.

It is worth noting that a relatively straightforward generalization of the present study
should be to materials whose elastic part of the constitutive law is non-linear. Another
possible generalization is to the case of large strains (“‘geometric” non-linearity).

From the computational point of view, the greatest drawback in the use of the func-
tionals suggested here rests in the solution of the elastic auxiliary problem. However, this
drawback could be overcome through the application of the boundary element technique.
[n this way the symmetric Galerkin double-integration approach seems to be particularly
promising (Maicr and Polizzotto. 1987 Polizzotto. 1988 ; Comi and Maier, 1992).
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APPENDIX

The following relations can be casily proved.
Using eqns (36} and (41) and twice the orinciple of virtual work we have

Do) dQ = - | e d - 1 et dQ = - FutdQ— ' putdl + l vn,00dr. (A1)
Ja Jo JQ RIS J Jr,
Taking inte account egns (36) and (41) the tollowing can be written
| ) [ ] e,
A a’ B, 00 A = 5 O g*)a dQ+ N z:‘,‘/ﬁf/.- dQ. (A2)

RN 4 =l

where the last term of the sccond member vanishes due to the principle of virtual work.
Using the principle of virtual work and eqn (41) the tollowing relation holds

. ‘ |
orel dQd = 5
) 2

1( 1 | . |
5| Pite®afdQ— [ FuldQ+ o vufdl = S| @ieN)ardQ+ |
B 2 = vt

< Ja - Ja i Tt

* i
[ B oy, dQ.
Q

v

(A3)
Due to the principle of virtual work
[ | 1/ —
S| etaid+ S | FaldQ— | pa’dl = 0. (Ad)
- ~Ja -1

Using the simmetry of the elastic constitutive law and using the principle of virtual work twice, the following
can be written :
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In the same way the following relations hold :
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3

“Ju
1 . 17
S| (e e dQ 3 anrdl ==
<l =T,

l Caty
ZJ;, W, (88, dQ = -

“~Jo

1

3

e/, dQ— ‘

I
€D g A2 = 3

I

H r ~
i) 40 = | oile, 40— | o, dQ =
Q Jo Ja

1
W(e)e; dQ+ 5

vnéldll = J Fu/dQ~ | pu’dl
" 0 o l",l
= J oile] dﬁf" aiflne,dl. (AS)
Q I,
J Fu dQ+J e dl"~J rn,oh d: (A6)
a r, r,
Wi(e%)e;, dQ; (A7)
JQ
( 1
aedQ =5 | & D dQ: (A8)
JQ “Ja
.
J oy dl; (A9)
r‘.

n L |
’ 65, dQ ~ 5
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